Characterization of ETFDH and PHGDH Mutations in a Patient with Mild Glutaric Aciduria Type II and Serine Deficiency

2021 
Glutaric aciduria type II (GA-II) is a rare autosomal recessive disease caused by defects in electron transfer flavoprotein (ETF), ultimately causing insufficiencies in multiple acyl-CoA dehydrogenase (MAD). 3-phosphoglycerate dehydrogenase (3-PHGDH) deficiency, is another rare autosomal disorder that appears due to a defect in the synthesis of L-serine amino acid. Several mutations of ETFDH and PHGDH genes have been associated with different forms of GA-II and serine deficiency, respectively. In this study, we report a unique case of GA-II with serine deficiency using biochemical, genetic, and in silico approaches. The proband of Syrian descent had positive newborn screening (NBS) for GA-II. At two years of age, the patient presented with developmental regression, ataxia, and intractable seizures. Results of amino acid profiling demonstrated extremely low levels of serine. Confirmatory tests for GA-II and whole exome sequencing (WES) were performed to determine the etiology of intractable seizure. Sequencing results indicated a previously reported homozygous missense mutation, c.679 C>A (p.Pro227Thr) in the ETFDH gene and a novel missense homozygous mutation c.1219 T>C (p.Ser407Pro) in the PHGDH gene. In silico tools predicted these mutations as deleterious. Here, the clinical and biochemical investigations indicate that ETFDH:p.Pro227Thr and PHGDH:p.Ser407Pro variants likely underlie the pathogenesis of GA-II and serine deficiency, respectively. This study indicates that two rare autosomal recessive disorders should be considered in consanguineous families, more specifically in those with atypical presentation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    1
    Citations
    NaN
    KQI
    []