Robot Manipulator Calibration Using a Model Based Identification Technique and a Neural Network With the Teaching Learning-Based Optimization

2020 
This paper proposes a new calibration method for enhancing robot positional accuracy of the industrial manipulators. By combining the joint deflection model with the conventional kinematic model of a manipulator, the geometric errors and joint deflection errors can be considered together to increase its positional accuracy. Then, a neural network is designed to additionally compensate the unmodeled errors, specially, non-geometric errors. The teaching-learning-based optimization method is employed to optimize weights and bias of the neural network. In order to demonstrate the effectiveness of the proposed method, real experimental studies are carried out on HH 800 manipulator. The enhanced position accuracy of the manipulator after the calibration confirms the feasibility and more positional accuracy over the other calibration methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    9
    Citations
    NaN
    KQI
    []