Adaptively reconstructing network of soft elastomers to increase strand rigidity: towards free-standing electro-actuation strain over 100.
2021
Soft biological tissues and muscles composed of semiflexible networks exhibit rapid strain-hardening behaviors to protect them from accidental rupture. In contrast, synthetic soft elastomers, usually featuring flexible networks, lack such behaviors, leading to a notorious issue when applying them to a promising artificial muscle technology (dielectric elastomer, DE), that is electromechanical instability (EMI) induced premature breakdown. We report that a facile thermomechanical training method can adaptively reconstruct the network of a soft triblock copolymer elastomer to transform its flexible network strands into semiflexible ones without extra chemical modifications and additives so that the electro-actuation performance is significantly enhanced by avoiding EMI. The free-standing actuators of trained elastomers exhibit a large stable electro-actuation strain and a high theoretical energy density (133%, 307 kJ m−3 at 158.1 V μm−1), and the capacity of actuating at low-temperature environments (−15 °C).
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
57
References
0
Citations
NaN
KQI