Influence of LBE Temperatures on the Microstructure and Properties of Crystalline and Amorphous Multiphase Ceramic Coatings
2019
An Al2O3–TiO2 amorphous composite coating with a thickness of 100–120 μm was fabricated on China low activation martensitic steel (CLAM steel) by oxygen acetylene flame spraying technology and the laser in-situ reaction method. We investigated the microstructures and mechanical properties of the coating after liquid lead-bismuth eutectic (LBE) alloy corrosion under different temperatures for 300 h and found that the corrosion temperature of the LBE had no observable effect on the microstructure and chemical phase of the Al2O3–TiO2 amorphous composite coatings. However, the mechanical properties (micro-hardness and shear strength) of the Al2O3–TiO2 multiphase coating deteriorated slightly with the increase in the immersion temperature of the LBE. As a result of oxygen acetylene flame spraying and laser in-situ reaction technology, it was found that the Al2O3–TiO2 amorphous composite coating exhibits an excellent LBE corrosion resistance, which is a candidate structural material for the accelerator-driven subcritical system (ADS) to handle nuclear waste under extreme conditions.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
27
References
6
Citations
NaN
KQI