Low levels of pyruvate induced by a positive feedback loop protects cholangiocarcinoma cells from apoptosis

2019 
Background Cancer cells avidly consume glucose and convert it to lactate, resulting in a low pyruvate level. This phenomenon is known as the Warburg effect, and is important for cell proliferation. Although cMyc has often been described as an oncoprotein that preferentially contributes to the Warburg effect and tumor proliferation, mechanisms of action remain unclear. Histone deacetylase 3 (HDAC3) regulates gene expression by removing acetyl groups from lysine residues, as well as has an oncogenic role in apoptosis and contributes to the proliferation of many cancer cells including cholangiocarcinoma (CCA). HDAC inhibitors display antitumor activity in many cancer cell lines. Cancer cells maintain low levels of pyruvate to prevent inhibition of HDAC but the mechanisms remain elusive. The purpose of our study was to explore the role of cMyc in regulating pyruvate metabolism, as well as to investigate whether the inhibitory effect of pyruvate on HDAC3 could hold promise in the treatment of cancer cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    10
    Citations
    NaN
    KQI
    []