PHOSPHO1 Gene DNA Methylations Are Associated with a Change in HDL-C Response to Simvastatin Treatment.

2020 
OBJECTIVE Our aim was to detect the effects of DNA methylations in the phosphoethanolamine/phosphocholine phosphatase (PHOSPHO1) gene on the therapeutic efficacy of simvastatin. METHODS We used an extreme sampling approach by selecting 211 individuals from approximately the top and bottom 15% of adjusted lipid-lowering response residuals to simvastatin (n=104 for the high response group and n=107 for the low response group) from a total of 734 subjects with hyperlipidemia. They received a daily oral dose of 20 mg simvastatin for eight consecutive weeks. DNA methylation loci at the PHOSPHO1 gene were measured using high-throughput next generation sequencing-based sequencing technology. Fasting serum lipids were measured at baseline and after eight weeks of simvastatin treatment. RESULTS Mean PHOSPHO1 DNA methylation had a significant negative correlation with high-density lipoprotein cholesterol (HDL-C) variation (β=-0.014, P=0.045) in the high response group. After stratifying by body mass index (BMI), the associations between the PHOSPHO1 DNA methylations and the change in HDL-C in response to simvastatin were more significant in obese subjects with a BMI of 25 kg/m2 or higher (β=-0.027, P=0.002). Mean PHOSPHO1 methylation and traditional predictors could explain up to 24.7% (adjusted R2 ) of the change in HDL-C response in obese patients. There was a statistically significant additive interaction term (P=0.028) between BMI and mean PHOSPHO1 methylation in the model of the change in HDL-C in response to simvastatin. CONCLUSION Our findings suggest that PHOSPHO1 DNA methylations are associated with a change in HDL-C in response to simvastatin treatment, and this association is especially dependent on the extent of patient obesity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    1
    Citations
    NaN
    KQI
    []