Coculture in vitro with endothelial cells induces cytarabine resistance of acute myeloid leukemia cells in a VEGF-A/VEGFR-2 signaling–independent manner

2021 
Abstract An interaction between acute myeloid leukemia (AML) cells and endothelial cells in the bone marrow seems to play a critical role in chemosensitivity on leukemia treatment. The endothelial niche reportedly enhances the paracrine action of the soluble secretory proteins responsible for chemoresistance in a vascular endothelial growth factor A (VEGF-A)/VEGF receptor 2 (VEGFR-2) signaling pathway–dependent manner. To further investigate the contribution of VEGF-A/VEGFR-2 signaling to the chemoresistance of AML cells, a biochemical assay system in which the AML cells were cocultured with human endothelial EA.hy926 cells in a monolayer was developed. By coculture with EA.hy926 cells, this study revealed that the AML cells resisted apoptosis induced by the anticancer drug cytarabine. SU4312, a VEGFR-2 inhibitor, attenuated VEGFR-2 phosphorylation and VEGF-A/VEGFR-2 signaling–dependent endothelial cell migration; thus, this inhibitor was observed to block VEGF-A/VEGFR-2 signaling. Interestingly, this inhibitor did not reverse the chemoresistance. When VEGFR-2 was knocked out in EA.hy926 cells using the CRISPR–Cas9 system, the cytarabine-induced apoptosis of AML cells did not significantly change compared with that of wild-type cells. Thus, coculture-induced chemoresistance appears to be independent of VEGF-A/VEGFR-2 signaling. When the transwell, a coculturing device, separated the AML cells from the EA.hy926 cells in a monolayer, the coculture-induced chemoresistance was inhibited. Given that the migration of VEGF-A/VEGFR-2 signaling–dependent endothelial cells is necessary for the endothelial niche formation in the bone marrow, VEGF-A/VEGFR-2 signaling contributes to chemoresistance by mediating the niche formation process, but not to the chemoresistance of AML cells in the niche.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []