Intrinsic p-type W-based transition metal dichalcogenide by substitutional Ta-doping

2017 
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have recently emerged as promising candidates for future electronics and optoelectronics. While most of TMDs are intrinsic n-type semiconductors due to electron donating which originates from chalcogen vacancies, obtaining intrinsic high-quality p-type semiconducting TMDs has been challenging. Here, we report an experimental approach to obtain intrinsic p-type Tungsten (W)-based TMDs by substitutional Ta-doping. The obtained few-layer Ta-doped WSe2 (Ta0.01W0.99Se2) field-effect transistor devices exhibit competitive p-type performances, including ∼106 current on/off at room temperature. We also demonstrate high quality van der Waals (vdW) p-n heterojunctions based on Ta0.01W0.99Se2/MoS2 structure, which exhibit nearly ideal diode characteristics (with an ideality factor approaching 1 and a rectification ratio up to 1 × 105) and excellent photodetecting performance. Our study suggests that substitutional Ta-doping holds great promise to realize i...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    17
    Citations
    NaN
    KQI
    []