Metabolomic and transcriptomic signatures of prenatal excessive methionine support nature rather than nurture in schizophrenia pathogenesis

2020 
The imbalance of prenatal micronutrients may perturb one-carbon (C1) metabolism and increase the risk for neuropsychiatric disorders. Prenatal excessive methionine (MET) produces in mice behavioral phenotypes reminiscent of human schizophrenia. Whether in-utero programming or early life caregiving mediate these effects is, however, unknown. Here, we show that the behavioral deficits of MET are independent of the early life mother-infant interaction. We also show that MET produces in early life profound changes in the brain C1 pathway components as well as glutamate transmission, mitochondrial function, and lipid metabolism. Bioinformatics analysis integrating metabolomics and transcriptomic data reveal dysregulations of glutamate transmission and lipid metabolism, and identify perturbed pathways of methylation and redox reactions. Our transcriptomics Linkage analysis of MET mice and schizophrenia subjects reveals master genes involved in inflammation and myelination. Finally, we identify potential metabolites as early biomarkers for neurodevelopmental defects and suggest therapeutic targets for schizophrenia. Chen, Alhassen et al. show that schizophrenia-like behavioral deficits induced by excessive prenatal methionine administration are due to in-uterus aberrations rather than through early life mother-infant interaction in mice. This study identifies the brain metabolites and transcriptomic signatures, which potentially serve as early biomarkers for schizophrenia-like behaviors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    6
    Citations
    NaN
    KQI
    []