CCUS in China’s mitigation strategy: insights from integrated assessment modeling

2019 
Abstract China is the world’s largest energy consumer and carbon dioxide (CO 2 ) emitter. China has committed to limit its greenhouse gas emissions. With its heavy reliance on domestic coal resources, China faces an enormous challenge of transitioning its economy to a low-carbon energy mix to achieve long-term climate and local air quality goals. Carbon capture, utilization, and storage (CCUS) is widely recognized as an important option for emissions mitigation. The near-term readiness and cost of CCUS technologies, the sectors and regions of CO 2 capture, and the location and adequacy of CO 2 storage sites all affect the application of CCUS in China’s low-carbon development. This study uses GCAM-China, a global integrated assessment model with details for 31 provinces in China, to examine the role of CCUS as part of China’s climate mitigation strategy over the period of its Nationally Determined Contributions as well as in the transition to deeper emissions reductions toward mid-century. The inclusion of new provincial CO 2 storage cost curves gives a more detailed evaluation of where, in terms of geography and sector, and when CCUS deployment in China may take place. The results suggest that the scale of deployment varies depending on socioeconomic development pathways and the level of deployment of other low-carbon technologies. Across provinces and development pathways, early deployment of CCUS occurs within industrial and synthetic fuel production sectors, followed by increased deployment in the power sector by mid-century. Several provinces, such as Shandong, Inner Mongolia, Hebei, and Henan, emerge as particularly important in CCUS deployment, as a result of large CO 2 point sources and storage availability. Results indicate that storage resource availability is unlikely to constrain CCUS deployment in most provinces through the end of the century.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    40
    Citations
    NaN
    KQI
    []