The Impact of Successive Gamma and Neutron Irradiation on Characteristics of PIN Photodiodes and Phototransistors

2016 
The aim of this paper is to explore the impact of increased gamma and neutron radia‐ tion on the PIN photodiodes and phototransistors and their output characteristics. Special attention was paid to the successive impact of gamma and neutron radiation when the components were located in the field of gamma radiation and after that in the field of neutron radiation. The impact of successive irradiation was compared with the influence of gamma and neutron radiation when they appear individually. An important result of this research is the observation that neutron irradiation of photovoltaic detectors, applied after gamma irradiation, leading to partial reparations of distorted semiconductor structure and increasing disrupted output characteristics (photocurrent, spectral response). Monte Carlo simulation of gamma photons transfer through the crystal lattice of the semiconductor has been shown that the cause of such effect of neutron radiation is a large number of divacancies caused by successive operation of the previous gamma radiation and the neutron radiation itself. Divacancies have created the basis for increased generation of charge carriers by direct transfer (tunneling) of carriers through the traps (recombination centers). This is so called intercenter charge transfer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []