Low-temperature phases of dicalcium barium hexakis(propanoate)

2021 
The structure determinations of phases (II) and (III) of barium dicalcium hexa­kis­(propano­ate) {or poly[hexa-μ4-propano­ato-bariumdicalcium], [BaCa2(C3H5O2)6]n} are reported at 240 and 130 K, respectively [phase (I) was determined previously by Stadnicka & Glazer (1980). Acta Cryst. B36, 2977–2985; our structure determination of phase (I) at room temperature is included in the supporting information]. In the high-temperature phase, the Ba2+ cation is surrounded by six car­box­yl­ate groups in bidentate bridging modes. In the low-temperature phases, five car­box­yl­ate groups act in bidentate bridging modes and one acts in a monodentate bridging mode around Ba2+. The Ca2+ cations are surrounded by six car­box­yl­ate O atoms in a trigonal anti­prism in all the structures. The Ba2+ and Ca2+ cations are underbonded and significantly overbonded, respectively, in all the phases. The bonding of the Ba2+ cation increases slightly at the cost of the bonding of Ca2+ cations during cooling to the low-temperature phases. The phase transitions during cooling are accompanied by ordering of the ethyl chains. In room-temperature phase (I), all six ethyl chains are positionally disordered over two positions in the crossed mode, with additional splitting of the ethyl α- and β-C atoms. In phase (II), on the other hand, there are three disordered ethyl chains, one with positionally disordered ethyl α- and β-C atoms, and the other two with positionally disordered ethyl β-C atoms only, and in the lowest-temperature phase (III) there are four ordered ethyl chains and two disordered ethyl chains with positionally disordered ethyl β-C atoms only.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    0
    Citations
    NaN
    KQI
    []