Electrolyte-induced inversion layer Schottky junction solar cells.

2011 
A new type of crystalline silicon solar cell is described. Superficially similar to a photoelectrochemical cell a liquid electrolyte creates a depletion (inversion) layer in an n-type silicon wafer, however no regenerative redox couple is present to ferry charge between the silicon and a counter electrode. Instead holes trapped in the electrolyte-induced inversion layer diffuse along the layer until they come to widely spaced grid lines, where they are extracted. The grid lines consist of a single-walled carbon nanotube film etched to cover only a fraction of the n-Si surface. Modeling and simulation shows the inversion layer to be a natural consequence of the device electrostatics. With electronic gating, recently demonstrated to boost the efficiency in related devices, the cell achieves a power conversion efficiency of 12%, exceeding the efficiency of dye sensitized solar cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    73
    Citations
    NaN
    KQI
    []