Impact of Patient Size and Radiation Dose on Accuracy and Precision of Iodine Quantification and Virtual Noncontrast Values in Dual-layer Detector CT—A Phantom Study

2019 
Rationale and Objectives Iodine quantification (IQ) and virtual noncontrast (VNC) images produced by dual-energy CT (DECT) can be used for various clinical applications. We investigate the performance of dual-layer DECT (DLDECT) in different phantom sizes and varying radiation doses and tube voltages, including a low-dose pediatric setting. Materials and Methods Three phantom sizes (simulating a 10-year-old child, an average, and a large-sized adult) were scanned with iodine solution inserts with concentrations ranging 0-32 mg/ml, using the DLDECT. Each phantom size was scanned with CTDIvol 2-15 mGy at 120 and 140 kVp. The smallest phantom underwent additional scans with CTDIvol 0.9-1.8 mGy. All scans were repeated 3 times. Each iodine insert was analyzed using VNC and IQ images for accuracy and precision, by comparison to known values. Results For scans from 2 to 15 mGy mean VNC attenuation and IQ error in the iodine inserts in the small, medium, and large phantoms was 1.2 HU ± 3.2, −1.2 HU ± 14.9, 2.6 HU ± 23.6; and +0.1 mg/cc ± 0.4, −0.9 mg/cc ± 0.9, and −1.8 mg/cc ± 1.8, respectively. In this dose range, there were no significant differences ( p ≥ 0.05) in mean VNC attenuation or IQ accuracy in each phantom size, while IQ was significantly less precise in the small phantom at 2 mGy and 10 mGy ( p Conclusion Performance of iodine quantification and subtraction by VNC images in DLDECT is largely dose independent, with the primary factor being patient size. Low-dose pediatric scan protocols have a significant, but limited impact on IQ and VNC attenuation values.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    3
    Citations
    NaN
    KQI
    []