Dysregulated Tgfbr2/ERK-Smad4/SOX2 signaling promotes lung squamous cell carcinoma formation

2019 
Lung squamous cell carcinoma (SCC) is a common type of lung cancer. There is limited information on the genes and pathways that initiate lung SCC. Here, we report that loss of TGF-β type II receptor (Tgfbr2), frequently deleted in human lung cancer, led to predominant lung SCC development in KrasG12D mice with a short latency, high penetrance, and extensive metastases. Tgfbr2-loss-driven lung SCCs resembled the salient features of human lung SCC, including histopathology, inflammatory microenvironment, and biomarker expression. Surprisingly, loss of Smad4, a key mediator of Tgfbr2, failed to drive lung SCC; instead, low levels of phosphorylated ERK1/2, a Smad-independent downstream effector of Tgfbr2, were tightly associated with lung SCC in both mouse and human. Mechanistically, inhibition of phosphorylated ERK1/2 significantly upregulated the expression of SOX2, an oncogenic driver of lung SCC, and cooperated with SMAD4 repression to elevate SOX2. Inhibition of ERK1/2 in Smad4fl/fl;KrasG12D mice led to extensive lung SCC formation that resembled the SCC phenotype of Tgfbr2-deficient mice. Overall, we reveal a key role of ERK1/2 in suppressing SCC formation and demonstrate that dysregulated Tgfbr2/ERK-Smad4/SOX2 signaling drives lung SCC formation. We also present a mouse model of metastatic lung SCC that may be valuable for screening therapeutic targets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    18
    Citations
    NaN
    KQI
    []