Pinning of the Fermi Level in CuFeO 2 by Polaron Formation Limiting the Photovoltage for Photochemical Water Splitting

2020 
CuFeO₂ is recognized as a potential photocathode for photo(electro)chemical water splitting. However, photocurrents with CuFeO₂-based systems are rather low so far. In order to optimize charge carrier separation and water reduction kinetics, defined CuFeO₂/Pt, CuFeO₂/Ag, and CuFeO₂/NiOx(OH)y heterostructures are made in this work through a photodeposition procedure based on a 2H CuFeO₂ hexagonal nanoplatelet shaped powder. However, water splitting performance tests in a closed batch photoreactor show that these heterostructured powders exhibit limited water reduction efficiencies. To test whether Fermi level pinning intrinsically limits the water reduction capacity of CuFeO₂, the Fermi level tunability in CuFeO₂ is evaluated by creating CuFeO₂/ITO and CuFeO₂/H₂O interfaces and analyzing the electronic and chemical properties of the interfaces through photoelectron spectroscopy. The results indicate that Fermi level pinning at the Fe³⁺/Fe²⁺ electron polaron formation level may intrinsically prohibit CuFeO₂ from acquiring enough photovoltage to reach the water reduction potential. This result is complemented with density functional theory calculations as well.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    16
    Citations
    NaN
    KQI
    []