Interchangeable Hebbian and Anti-Hebbian STDP Applied to Supervised Learning in Spiking Neural Network

2018 
This work provides a complete framework, including device, architecture, and algorithm, for implementing bio-inspired supervised spiking neural networks (SNNs) on hardware. An analog synapse with atypical dual bipolar resistive-switching (D-BRS) modes demonstrates interchangeable Hebbian spiking-timing-dependent plasticity (STDP) and anti-Hebbian STDP, and it is capable of implementing supervised ReSuMe SNNs in crossbar arrays. By using an “exchange” update scheme, accurate supervised learning (∼96% for MNIST) is achieved in a compact network.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    3
    Citations
    NaN
    KQI
    []