Modelling porcine reproductive and respiratory syndrome virus dynamics to quantify the contribution of multiple modes of transmission: between-farm animal and vehicle movements, farm-to-farm proximity, feed ingredients, and re-break

2021 
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause substantial economic losses for the North American pork industry. Here we developed and parameterized a mathematical model for transmission of PRRSV amongst the swine farms of one U.S. state. The model is tailored by eight modes of between-farm transmission pathways including farm-to-farm proximity (local transmission), networks comprised of different layers contacts here considered the number of batches of pigs transferred between-farm (pig movements), transportation vehicles used for -- feed delivery, transferring live pigs to farms and to markets, and personnel (crew), in addition to the quantity of feed with animal by-products within feed ingredients, and finally we also accounted for re-break probabilities for farms with previous PRRSV outbreaks. The model was calibrated on weekly PRRSV outbreaks data. We assessed the role of each transmission pathway considering the dynamics of specific types of production. Our results estimated that the networks formed by transportation vehicles were more densely connected than the actual network of pigs moved between-farms. The model estimated that pig movements and farm proximity were the main route of transmission in the spread of PRRSV regardless of production types, but vehicles transporting pigs to farms explained a large proportion of infections (sow = 17.2%; nursery = 11.7%; and finisher = 29.5%). Animal by-products delivered via feed contributed principally to finisher farms, with a significant impact on PRRSV outbreaks on sow farms. Thus, our results support the consideration of transport vehicles and feed meals in order better to understand the transmission dynamic of PRRSV and establish more robust control strategies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []