Characterizing elastic properties of carbon nanotube‐based composites by using an equivalent fiber

2013 
Effective elastic properties for carbon nanotube (CNT)-reinforced composites are obtained through a variety of micromechanics techniques. An embedded CNT in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the CNT/polymer composite. Formulas to extract the effective material constants from solutions for the representative volume element under three loading cases are derived based on the elasticity theory. The effects of an interphase layer between the nanotubes and the polymer matrix as result of effective interphase layer are also investigated. Furthermore, this research is aimed at characterizing the elastic properties of CNTs-reinforced composites using Eshelby–Mori–Tanaka approach based on an equivalent fiber. The variations of mechanical properties with tube radius, interphase thickness, and degree of aggregation are investigated. It is shown that the presence of aggregates has stronger impact than the interphase thickness on the effective modulus of the composite. This is because aggregates have significantly lower modulus than individual CNTs. POLYM. COMPOS., 2013 © 2013 Society of Plastics Engineers
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    17
    Citations
    NaN
    KQI
    []