Review of Various Hypotheses Used to Correct Notch Elastic Stress/Strain for Local Plasticity

2021 
In present study, the notch geometry, constraint conditions, loading conditions and peak equivalent strains have been accounted to review classical hypotheses for estimation of localized stress/strain values. Two dimensional and three dimensional FE analyses have been performed on planner and tube geometry for validation of classical schemes based on strain energy conservation on maximum principal stress/strain plane and von-Mises equivalent stress/strain. These geometries (plane 2D and tube) have single central circular hole subjected to three different equivalent peak strain levels. The hypotheses based on conservation of strain energy on equivalent stress and strain values results in better predictions of localized stress for plane stress, plane strain and tube geometries. The hole diameter was also varied to study the effect of strain gradient. It has been brought out that for given equivalent peak strain, the percentage difference between predicted and FE localized stress results is nearly similar for various hole diameters. Further, a three dimensional tube geometry with intermediate constraint level was also analyzed and the suitability of classical hypotheses have been brought out w.r.t. FE outcome.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []