Stimulus-Responsive Planet–Satellite Nanostructures as Colloidal Actuators: Reversible Contraction and Expansion of the Planet–Satellite Distance

2017 
Structural plasticity and its control at the nanoscale are a vivid area of material science. In this contribution, we report a conceptually simple and versatile strategy for the formation of reconfigurable nanoparticle arrangements. The key role in our approach is played by star block copolymers from controlled radical RAFT polymerization, which fulfill the dual task of guiding the particle arrangement and also of equipping the nanomaterials with stimulus-responsiveness. By virtue of their block structure, the star polymers provide at the same time colloidal stability and responsive properties. Structural switching in response to the applied stimulus was investigated by means of small-angle X-ray scattering and dynamic light scattering. The developed approach is general, easy to implement, and may provide new prospects for the development of colloidal actuators, nanoscale materials with switchable properties, and nanoscale machines.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    13
    Citations
    NaN
    KQI
    []