Fast in-situ photoluminescence analysis for a recombination parameterization of the fast BO defect component in silicon

2016 
Light-induced degradation due to BO defects in silicon consists of a fast initial decay within a few seconds followed by a slower decay within hours to days. Determination of injection dependent charge carrier lifetime curves during the initial decay is challenging due to this short timeframe. We have developed a suitable measurement technique based on in situ photoluminescence measurements and present results of our studies of the fast degradation component. The temporal evolution of the recombination activity is studied and assessed by means of a two-level Shockley-Read-Hall statistics. A quadratic dependence of the fast defect activation on the hole concentration during illumination is demonstrated. We suggest a new parameterization of the recombination activity introduced by fast-formed BO defects featuring energy levels 0.34 eV below the conduction band and 0.31 eV above the valence band. The capture asymmetry ratio determined for the donor level of 18.1 is significantly smaller than previous paramet...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    17
    Citations
    NaN
    KQI
    []