Electromagnetic resistivity anisotropy in till from the Kiskatinaw streamlined landform field, northeastern British Columbia, Canada

2019 
Abstract Applications of the azimuthal electromagnetic (EM) method that establish the internal structure of landforms consisting of sediment are sparse. In the Kiskatinaw streamlined landform field of northeastern British Columbia, ice-flow parallel till ridges formed beneath the Cordilleran Ice Sheet during the late Wisconsinan. EM anisotropy data from the Kiskatinaw field are systematically related to ridge elongation and orientation and, in part, to clast fabrics. However, in contrast to previous studies, we find that resistivity measurements do not necessarily record the orientation of ice flow, and electrical anisotropy in till may not be a simple indicator of ice-flow direction. For highly elongate ridges (l/w > 3), the long axes of resistivity ellipses are at high angles to the long axes of the landforms. Tills in these elongate ridges are matrix rich (>85%) and display strong unimodal ice-flow parallel clast fabrics. For more equant ridges (l/w
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    0
    Citations
    NaN
    KQI
    []