Trypsin mediated one-pot reaction for the synthesis of red fluorescent gold nanoclusters: Sensing of multiple analytes (carbidopa, dopamine, Cu2+, Co2+ and Hg2+ ions)

2019 
Abstract Herein, we fabricated fluorescent gold nanoclusters (Au NCs) by using trypsin as a ligand. The fabricated trypsin-Au NCs emit bright red color fluorescence upon the exposure of 365 nm UV light. The trypsin-Au NCs are stable and well dispersed in water, which exhibited strong red emission peak at 665 nm upon excitation wavelength of 520 nm. The red fluorescence of trypsin-Au NCs was greatly quenched by the addition of multiple analytes such as drugs (carbidopa and dopamine) and three divalent metal ions (Cu 2+ , Co 2+ and Hg 2+ ion). As a result, a novel fluorescence “turn-off” probe was developed for the detection of the above analytes with good selectivity and sensitivity. This method exhibits the detection limits for carbidopa, dopamine, Cu 2+ , Co 2+ and Hg 2+ ions are 6.5, 0.14, 5.2, 0.0078, and 0.005 nM, respectively. The trypsin-Au NCs were successfully applied to detect drugs (carbidopa, and dopamine) in pharmaceutical samples and metal ions (Cu 2+ , Co 2+ and Hg 2+ ion) in biofluids and water samples, exhibiting good precision and accuracy, which offers a facile analytical strategy for assaying of the above analytes in pharmaceutical and biological samples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    37
    Citations
    NaN
    KQI
    []