Probabilistic Boolean network modeling of an industrial machine

2018 
Theoretical modeling of manufacturing processes assists the design of new systems for predictions of future behavior, identifies improvement areas, and evaluates changes to existing systems. A novel approach is proposed to model industrial machines using probabilistic Boolean networks (PBNs) to study the relationship between machine components, their reliability and function. Once a machine is modeled as a PBN, through identification of regulatory nodes, predictors and selection probabilities, simulation and property verification are used to verify model correctness and behavior. Using real machine data, model parameters are estimated and a PBN is built to describe the machine, and formulate valid predictions about probability of failure through time. Two models were established: one with non-deterministic inputs (proposed), another with components’ MTBFs inputs. Simulations were used to generate data required to conduct inferential statistical tests to determine the level of correspondence between predictions and real machine data. An ANOVA test shows no difference between expected and observed values of the two models (p value = 0.208). A two-sample T test demonstrates the proposed model provides values closer to expected values; consequently, it can model observable phenomena (p value \(=\) 0.000). Simulations are used to generate data required to conduct inferential statistical tests to determine the level of correspondence between model prediction and real machine data. This research demonstrates that using PBNs to model manufacturing systems provides a new mechanism for the study and prediction of their future behavior at the design phase, assess future performance and identify areas to improve design reliability and system resilience.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    82
    References
    23
    Citations
    NaN
    KQI
    []