Fracture detection and imaging through relative seismic velocity changes using distributed acoustic sensing and ambient seismic noise

2017 
Abstract Fracture systems are important pathways for fluid and solute transport and exert a critical influence on the hydraulic properties of aquifers and reservoirs. Therefore, detailed knowledge of fracture locations, connections, and evolution is crucial for both groundwater and energy applications (e.g., enhanced geothermal, oil and gas recovery, carbon sequestration, and wastewater injection). The innovative combination of distributed acoustic sensing (DAS) and ambient seismic noise techniques has the potential to detect and characterize fracture systems at high-spatial and temporal resolution without an active source. To test this, we conducted a multiphysics field experiment at Blue Canyon Dome, New Mexico. A novel energetic material developed by Sandia National Laboratories was used to generate fractures in two separate stimulations. Ambient noise was recorded before and after each stimulation using fiber-optic cables installed in the outer annulus of four boreholes surrounding the stimulation hol...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    7
    Citations
    NaN
    KQI
    []