Rapid and Large-Scale Synthesis of IRMOF-3 by Electrochemistry Method with Enhanced Fluorescence Detection Performance for TNP

2018 
Rapid and large-scale synthesis of metal–organic frameworks (MOFs) materials is of great significance for their practical applications. For the first time, we have electrochemically synthesized IRMOF-3 at room temperature by applying a voltage to a zinc electrode immersed in electrolyte containing 2-aminoterephthalic acid (NH2-H2BDC). The reaction conditions, including the ratio of solvent (electrolyte), the applied voltage, and different reaction times, were investigated and optimized. The degree of crystallinity and nanomorphology of the synthesized IRMOF-3 can be controlled by changing the reaction conditions. More importantly, we demonstrated that the electrochemical synthesis strategy can rapidly obtain nanoscale IRMOF-3 with high crystallinity on a gram scale. In addition, in comparison with the product of solvothermal synthesis, the electrochemically synthesized nanoscale IRMOF-3 exhibits improved fluorescent detection ability to 2,4,6-trinitrophenol (TNP) with a detection limit of about 0.1 ppm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    32
    Citations
    NaN
    KQI
    []