The regulation of cystogenesis in a tissue engineered kidney disease system by abnormal matrix interactions.

2012 
Autosomal Dominant Polycystic Kidney Disease (ADPKD) remains a major health care concern affecting several million patients worldwide and for which there is no specific treatment. We have employed a 3D tissue engineered disease-like system to emulate cystic structures in vitro and analyzed the extracellular matrix (ECM) interactions in it. The tissue system was developed by culturing normal or polycystin-1 silenced mouse Inner Medullary Collecting Duct (mIMCD) cells in ECM infused into 3D porous silk protein biomaterial scaffolds. In this system, the silk scaffolds provide slow degradation, biocompatibility, and maintain structure and transport for the 3D system, while the ECM molecules retain biological signaling. Using this 3D tissue system we provide evidence for an autocrine signaling loop involving abnormal matrix deposition (collagen type IV and laminin) and its integrin receptor subunit protein (Integrin-β1) in Pkd1 silenced mIMCD cells. In addition, we report that abnormal pericystic ECM interactions between matrix molecules and integrin subunit proteins regulate the rate of cystogenesis in the disease system. Molecular signaling showed abnormalities in cyclin proteins and cell-cycle progression upon Pkd1 knockdown. Importantly, disruption of the abnormal matrix interactions by an additional knockdown (double-silencing) of integrin-β1 in Pkd1 silenced cells reversed the abnormalities and reduced the rate of cystogenesis. Together, these findings indicate that abnormal matrix deposition and altered integrin profile distribution as observed in ADPKD and are critical in cystogenesis and should be considered a target for the development of therapeutics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    19
    Citations
    NaN
    KQI
    []