Mixed Variable Structural Optimization: Toward an Efficient Hybrid Algorithm

2017 
Designing a structure implies a selection of optimal concept and sizing, with the aim of minimizing the weight and/or production cost. In general, a structural optimization problem involves both continuous variables (e.g., geometrical variables, …) and categorical ones (e.g., materials, stiffener types, …). Such a problem belongs to the class of mixed-integer nonlinear programming (MINLP) problems. In this paper, we specifically consider a subclass of structural optimization problems where the categorical variables set is non-ordered. To facilitate categorical variables handling, design catalogs are introduced as a generalization of the stacking guide used for composite optimization. From these catalogs, a decomposition of the MINLP problem is proposed, and solved through a branch and bound method. This methodology is tested on a 10 bars truss optimization inspired from an aircraft design problem, consistent with the level of complexity faced in the industry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    5
    Citations
    NaN
    KQI
    []