Photoluminescence study of non-polar m-plane InGaN and nearly strain-balanced InGaN/AlGaN superlattices

2020 
Photoluminescence (PL) spectroscopy of nonpolar m-plane InGaN thin films with indium composition up to 21% and nearly strain-balanced In0.09Ga0.91N/Al0.19Ga0.81N superlattices grown by plasma-assisted molecular beam epitaxy was performed as a function of temperature. The experimental transition energies are consistently lower than the calculation based on structural parameters extracted from x-ray diffraction measurements. This indicates the presence of indium composition fluctuations in InGaN and hence local bandgap reduction that produces charge localization centers. The spectral width of the low-temperature PL of our m-plane InGaN/AlGaN superlattices is narrower than previously reported for m-plane InGaN/GaN quantum wells grown by MOCVD. The PL integrated intensity drops rapidly, though, as the temperature is increased to 300 K, indicating strong non-radiative recombination at room temperature. Time-resolved PL at low temperatures was performed to characterize the relaxation time scales in an undoped a...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    2
    Citations
    NaN
    KQI
    []