Wind-driven bottom currents and related sedimentary bodies in Lake Saint-Jean (Québec, Canada)

2015 
Lakes are major depositional systems for which the related depositional processes have long been considered relatively simple. Breaking this statement, this study presents a detailed analysis of deposits in Lake Saint-Jean, the third largest natural lake in Quebec. In addition to postglacial deltaic and coastal depositional systems fringing the lake, current-controlled features such as a large subaqueous prograding wedge and three sediment drifts have been identifi ed in its central portion based on two-dimensional (2-D) acoustic high-resolution subbottom profiles. The large subaqueous prograding wedge is a 4-km-long and up to 15-m-thick heterolithic shelf-like construction in the southeastern part of the lake. The three sediment drifts are 0.1–0.5-km-long and 2–5-mthick mud mounds distributed on the lake floor in the central portion of the lake. Diatom analyses and radiocarbon dating show that the development of these current-controlled features occurred during the lacustrine phase, after the disconnection with the postglacial marine Laflamme Gulf at 8.5 cal. k.y. B.P. Depositional facies show evidence of recurrent bottom-current activity. Related deposits alternate with pelagic sedimentation stages characterized by the settling of mud and biogenic accumulations. We investigated the origin of bottom currents using a numerical simulation (SYMPHONIE, an oceanographic model), with the aim of modeling wind-induced lake-scale water circulation. Simulations suggest that the subaqueous prograding wedge and the three sediment drifts result from wind-induced bottom currents generated by storm events having wind speed greater than 10 m s–1. Such strong winds are able to significantly affect sedimentation in the central portion of Lake Saint-Jean. The resulting wind-induced sedimentary features were integrated into a refi ned lacustrine depositional model that summarizes the evolution of a group of water bodies referred to as “wind-driven water bodies.” This study applies a new tool for lake strata characterization and highlights the potential diffi culty in differentiating them from marine deposits in the geological record.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    17
    Citations
    NaN
    KQI
    []