Trans-omic analysis reveals allosteric and gene regulation-axes for altered glucose-responsive liver metabolism associated with obesity

2019 
Abstract Impaired glucose tolerance associated with obesity causes postprandial hyperglycemia and can lead to type 2 diabetes. To study the differences in liver metabolism in the healthy and obese states, we constructed and analyzed trans-omic glucose-responsive metabolic networks with layers for metabolites, expression data for metabolic enzyme genes, transcription factors, and insulin signaling proteins from the livers of healthy and obese mice. We integrated multi-omic time-course data from wild-type (WT) and leptin-deficient obese (ob/ob) mice after orally administered glucose. In WT mice, metabolic reactions were rapidly regulated (within 10 minutes of oral glucose administration) primarily by glucose-responsive metabolites, especially ATP and NADP+, which functioned as allosteric regulators and substrates of metabolic enzymes, and by Akt-dependent glucose-responsive genes encoding metabolic enzymes. In ob/ob mice, most rapid regulation by glucose-responsive metabolites was absent; instead, glucose administration produced slow changes in the expression of metabolic enzyme-encoding genes to alter metabolic reactions in a time scale of hours. Few common regulatory events occurred in both the healthy and obese mice. Thus, our trans-omic network analysis revealed regulation of liver metabolism in response to glucose is mediated through different mechanisms in the healthy and obese states: Rapid changes in allosteric regulators and substrates and in gene expression dominate the healthy state, and slow transcriptional regulation dominates the obese state. One Sentence Summary Rapid changes in regulatory metabolites and gene expression dominate the healthy state, and slow transcriptional regulation dominates the obese state.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []