Interconnections between networks acting like an external field in a first-order percolation transition

2020 
Many interdependent, real-world infrastructures involve interconnections between different communities or cities. Here we show how the effects of such interconnections can be described as an external field for interdependent networks experiencing a first-order percolation transition. We find that the critical exponents gamma and delta, related to the external field, can also be defined for first-order transitions but that they have different values than those found for second-order transitions. Surprisingly, we find that both sets of different exponents (for first and second order) can even be found within a single model of interdependent networks, depending on the dependency coupling strength. Nevertheless, in both cases both sets satisfy Widom's identity, delta-1=gamma/beta, which further supports the validity of their definitions. Furthermore, we find that both Erdos-Renyi and scale-free networks have the same values of the exponents in the first-order regime, implying that these models are in the same universality class. In addition, we find that in k-core percolation the values of the critical exponents related to the field are the same as for interdependent networks, suggesting that these systems also belong to the same universality class.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    14
    Citations
    NaN
    KQI
    []