miR-125a-3p is responsible for chemosensitivity in PDAC by inhibiting epithelial-mesenchymal transition via Fyn

2018 
Abstract Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and resistance to cytotoxic chemotherapy is the major cause of mortality in PDAC patients. miR-125a-3p was found to be down-regulated in PDAC cells; however, the function of miR-125a-3p in PDAC has been elusive. Here, we explored the role of miR-125a-3p in chemosensitivity in PDAC cells. Methods We used qRT-PCR to detect miR-125a-3p expression in two PDAC cell lines. And we measured cell viability and apoptosis by MTT assay and flow cytometry, respectively. Scratch wound healing assay and transwell invasion assay were used to test the effects of miR-125a-3p and Fyn on cell EMT process. In addition, we validated the interaction of miR-125a-3p and Fyn by dual luciferase reporter assay. qRT-PCR and western blot were used to detect the mRNA and protein expressions of E-cadhrein, N-cadhrein, Snail and Fyn. Results We found that miR-125a-3p was down-regulated in a time-dependent manner following treatment with gemcitabine in PDAC cells. Meanwhile, we found that overexpression of miR-125a-3p significantly increased chemosensitivity to gemcitabine and suppressed epithelial-mesenchymal transition (EMT) of PDAC cells. Mechanistically, miR-125a-3p directly targeted Fyn and decreased the expression of Fyn that functions to promote EMT process in PDAC. Furthermore, overexpression of Fyn could partially reverse the effects of miR-125a-3p on chemosensitivity to gemcitabine. Conclusion Our study is the first to show that miR-125a-3p is responsible for chemosensitivity in PDAC and could inhibit epithelial-mesenchymal transition by directly targeting Fyn. This provides a novel potential therapeutic strategy to overcome chemoresistance in PDAC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    17
    Citations
    NaN
    KQI
    []