Characterization of the IRSN neutron multisphere spectrometer (HERMEIS) at European standard calibration fields

2012 
The Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a new spectrometry system for neutron energies from 10−9 MeV to 10 GeV. This high energy range multisphere extended IRSN system (HERMEIS) is a high gas pressure3He-based Bonner spheres set. It is adapted to low neutron fluence rate measurements and one of its main application concerns the determination of cosmic-ray-induced neutron spectra at ground level and mountain altitudes. The neutron fluence response matrix of the set of 13 Bonner spheres, including three extended ones with tungsten and lead shells, was calculated with the radiation transport code MCNPX-2.6f. Reliable fluence responses being mandatory for a correct evaluation of the atmospheric neutron spectra, HERMEIS was characterized at standard monoenergetic, quasi-monoenergetic and realistic neutron fields facilities. Measurements with monoenergetic neutron beams of 144 keV, 565 keV, 5 MeV and 17 MeV were performed at the NPL standard Van de Graaff facility. For the characterization of the response functions at higher energies, measurements were done at the Svedberg Laboratory, with 46 MeV and 144 MeV quasi-monoenergetic neutrons. Finally, to demonstrate the suitability of the system for broad cosmic-ray neutron spectra, measurements were performed at the TSL Atmospheric-like Neutrons from thIck TArget (ANITA) and also at the CERN European Realistic Field (CERF) facilities. Data from the realistic spectra were unfolded with the GRAVEL unfolding code and as a whole, a good agreement was found between the experimental and Monte-Carlo calculated neutron fluence energy distributions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    19
    Citations
    NaN
    KQI
    []