On the Application of OpenFOAM® in Gravity Water Wave Generation and Wave-Structure Interaction

2019 
This article presents an investigation on the best practice for modeling of water wave generation and wave-structure interaction using a widely spread two-phase flow solver with a specific interface compression technique in OpenFOAM® (OpenFOAM Foundation Ltd., London, United Kingdom). A series of numerical experiments were conducted to examine the effects of the employed schemes, mesh resolution, time step resolution, and compression coefficient. Both surface elevation and velocity profile were considered as the criteria for assessment of the quality of the generated waves. The numerical experiments showed that by using a blending scheme between the Crank-Nicolson and Euler scheme, relatively high quality waves were produced, where the spurious current at the interface region was effectively reduced. Meanwhile, it was also recommended to apply a compression coefficient Cα = 1, the Courant number limit Co = .1, and a mesh resolution of 18 cells per wave height. This set of parameters was used to validate the numerical model for two sets of cases for wave forces on half-immersed horizontal cylinders. The results in general agreed well with the experimental data, although the inline forces were slightly but consistently overestimated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []