A New Understanding of Au‐Assisted Growth of III–V Semiconductor Nanowires

2005 
Semiconductor nanowires of III-V materials have generated much interest in recent years. However, the growth mechanisms by which these structures form are not well understood. The so-called vapor-liquid-solid (VLS) mechanism has often been proposed for III-V systems, with a chemically inert, liquid metal particle (typically Au) acting as a physical catalyst. We assert here that An is, in fact, not inert with respect to the semiconductor material but rather interacts with it to form a variety of intermetallic compounds. Moreover, we suggest that III-V nanowire growth can best be understood if the metallic particle is not a liquid, but a solid-phase solution or compound containing An and the group III material. The four materials GaP, GaAs, InP, and InAs will be considered, and growth behavior related to their particular temperature-dependent interaction with Au. (Less)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    136
    Citations
    NaN
    KQI
    []