Computational fluid dynamics simulation to evaluate aortic coarctation gradient with contrast-enhanced CT.

2015 
Coarctation of aorta (CoA) is a narrowing of the aorta leading to a pressure gradient (ΔP) across the coarctation, increased afterload and reduced peripheral perfusion pressures. Indication to invasive treatment is based on values of maximal (systolic) trans-coarctation ΔP. A computational fluid dynamic (CFD) approach is herein presented for the non-invasive haemodynamic assessment of ΔP across CoA. Patient-specific CFD simulations were created from contrast-enhanced computed tomography (CT) and appropriate flow boundary conditions. Computed ΔP was validated with invasive intravascular trans-CoA pressure measurements. Haemodynamic indices, including pressure loss coefficient (PLc), time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI), were also quantified. CFD-estimated ΔP values were comparable to the invasive ones. Moreover, the aorta proximal to CoA was exposed to altered TAWSS and OSI suggesting hypertension. PLc was found as a further geometric marker of CoA severity. Finally, CF...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    9
    Citations
    NaN
    KQI
    []