Identifying and managing osteoporosis before and after COVID-19: rise of the remote consultation?

2020 
The COVID-19 pandemic is influencing methods of healthcare delivery. In this short�review, we discuss the evidence for remote healthcare delivery in the context of osteoporosis. INTRODUCTION: The COVID-19 pandemic has undoubtedly had, and will continue to have, a significant impact on the lives of people living with, and at risk of, osteoporosis and those caring for them. With osteoporosis outpatient and Fracture Liaison Services on pause, healthcare organisations have already moved to delivering new and follow-up consultations remotely, where staffing permits, by telephone or video. METHODS: In this review, we consider different models of remote care delivery, the evidence for their use, and the possible implications of COVID-19 on osteoporosis services. RESULTS: Telemedicine is a global term used to describe any use of telecommunication systems to deliver healthcare from a distance and encompasses a range of different scenarios from remote clinical data transfer to remote clinician-patient interactions. Across a range of conditions and contexts, there remains unclear evidence on the acceptability of telemedicine and the effect on healthcare costs. Within the context of osteoporosis management, there is some limited evidence to suggest telemedicine approaches are acceptable to patients but unclear evidence on whether telemedicine approaches support informed drug adherence. Gaps in the evidence pertain to the acceptability and benefits of using telemedicine in populations with hearing, cognitive, or visual impairments and in those with limited health literacy. CONCLUSION: There is an urgent need for further health service evaluation and research to address the impact of remote healthcare delivery during COVID-19 outbreak on patient care, and in the longer term, to identify acceptability and cost- and clinical-effectiveness of remote care delivery on outcomes of relevance to people living with osteoporosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    12
    Citations
    NaN
    KQI
    []