13C and 15N NMR evidence for peripheral intercalation of uniformly labeled fusogenic peptides incorporated in a biomimetic membrane

2007 
Membrane fusion requires drastic and transient changes of bilayer curvature and here we have studied the interaction of three de novo designed synthetic hydrophobic peptides with a biomimetic three-lipid mixture by solid state NMR. An experimental approach is presented for screening of peptide–lipid interactions and their aggregation, and their embedding in a biomimetic membrane system using established proton-decoupled 13 C, 15 N and proton spin diffusion heteronuclear 1 H− 13 C correlation NMR methods at high magnetic field. Experiments are presented for a set of denovo designed fusion peptides in interaction with their lipid environment. The data provide additional support for the transmembrane model for the least fusogenic peptide, L16, while the peripheral intercalation model is preferred for the fusogenic peptides LV16 and LV16G8P9. This contributes to converging evidence that peripheral intercalation is both necessary and sufficient to trigger the fusion process for a lipid mixture close to a critical point for phase separation across the bilayer. © 2007 Elsevier B.V. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    3
    Citations
    NaN
    KQI
    []