P–N Junction Diode using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices

2019 
This study used a spatially controlled boron-doping technique that enables a p–n junction diode to be realized within a single 2D black phosphorus (BP) nanosheet for high-performance photovoltaic application. The reliability of the BP surface and state-of-the-art 2D p–n heterostructure’s gated junctions was obtained using the controllable pulsed-plasma process technique. Chemical and structural analyses of the boron-doped BP were performed using X-ray photoelectron spectroscopy, transmission electron microscopy, and first-principles density functional theory (DFT) calculations, and the electrical characteristics of a field-effect transistor based on the p–n heterostructure were determined. The incorporated boron generated high electron density at the BP surface. The electron mobility of BP was significantly enhanced to ∼265 cm2/V·s for the top gating mode, indicating greatly improved electron transport behavior. Ultraviolet photoelectron spectroscopy and DFT characterizations revealed the occurrence of si...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    17
    Citations
    NaN
    KQI
    []