Tolbutamide Controls Glucagon Release From Mouse Islets Differently Than Glucose: Involvement of KATP Channels From Both α-Cells and δ-Cells

2013 
We evaluated the role of ATP-sensitive K⁺ (K(ATP)) channels, somatostatin, and Zn²⁺ in the control of glucagon secretion from mouse islets. Switching from 1 to 7 mmol/L glucose inhibited glucagon release. Diazoxide did not reverse the glucagonostatic effect of glucose. Tolbutamide decreased glucagon secretion at 1 mmol/L glucose (G1) but stimulated it at 7 mmol/L glucose (G7). The reduced glucagon secretion produced by high concentrations of tolbutamide or diazoxide, or disruption of K(ATP) channels (Sur1(-/-) mice) at G1 could be inhibited further by G7. Removal of the somatostatin paracrine influence (Sst(-/-) mice or pretreatement with pertussis toxin) strongly increased glucagon release, did not prevent the glucagonostatic effect of G7, and unmasked a marked glucagonotropic effect of tolbutamide. Glucose inhibited glucagon release in the absence of functional K(ATP) channels and somatostatin signaling. Knockout of the Zn²⁺ transporter ZnT8 (ZnT8(-/-) mice) did not prevent the glucagonostatic effect of glucose. In conclusion, glucose can inhibit glucagon release independently of Zn²⁺, K(ATP) channels, and somatostatin. Closure of K(ATP) channels controls glucagon secretion by two mechanisms, a direct stimulation of α-cells and an indirect inhibition via somatostatin released from δ-cells. The net effect on glucagon release results from a balance between both effects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    72
    Citations
    NaN
    KQI
    []