Molecular mechanism of attenuation of heat shock transcription factor 1 activity

2019 
The heat shock response is a universal transcriptional response to proteotoxic stress orchestrated by heat shock transcription factor Hsf1 in all eukaryotic cells. Despite over 40 years of intense research, the mechanism of HSF1 activity regulation remains poorly understood at a molecular level. In metazoa Hsf1 trimerizes upon heat shock through a leucin-zipper domain and binds to DNA. How Hsf1 is dislodged from DNA and monomerized remained enigmatic. Here, we demonstrate that trimeric Hsf1 is dissociated from DNA in vitro by Hsc70 and DnaJB1. Hsc70 acts at two distinct sites on Hsf1. Hsf1 trimers are monomerized by successive cycles of entropic pulling, unzipping the triple leucine-zipper. This process directly monitors the concentration of Hsc70 and DnaJB1. During heat shock adaptation Hsc70 first binds to the transactivation domain leading to partial attenuation of the response and subsequently, at higher concentrations, Hsc70 removes Hsf1 from DNA to restore the resting state.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    0
    Citations
    NaN
    KQI
    []