Using capillary forces to determine the elastic properties of mesoporous materials

2017 
The capillary forces in mesoporous materials, when imbibed with liquid, are large enough to induce mechanical deformations. Using anisotropic porous silicon, we show that systematic measurements of strain as a function of the pore pressure can yield most of the elastic constants characterizing the porous matrix. The results of this poroelastic approach are in agreement with independent standard stress-strain measurements. The porosity dependence of Young's moduli as well as the values of Poisson's ratios are qualitatively consistent with porous silicon having a honeycomb structure. For a quantitative comparison, we performed finite element modeling of realistic pore geometries. The calculated elastic moduli are found to be much smaller than the measured ones. This is presumably due to both (i) finite-size effects, the Young's modulus of the 5-nm thick walls of the honeycomb could be notably smaller than the Young's modulus of bulk Si, and (ii) defects of the honeycomb structure along the pore axis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    18
    Citations
    NaN
    KQI
    []