Combining Ability of Extra-Early Maize Inbreds Derived from a Cross between Maize and Zea diploperennis and Hybrid Performance under Contrasting Environments

2020 
Knowledge of the genetic mechanisms conditioning drought tolerance in maize is crucial to the success of hybrid breeding programs aimed at developing high-yielding cultivars under drought. The objectives of this study were to determine the combining ability of extra-early inbreds, compute the heritability of measured traits, assess the performance of inbreds in hybrid combinations and investigate the associations among traits under drought and optimal conditions. A total of 252 hybrids generated by crossing 63 inbreds to four testers, along with four commercial hybrid checks, were evaluated for 2 years under drought and rainfed conditions. General combining ability (GCA) and specific combining ability (SCA) for the traits were significant. A total of 57.1% and 53.4% of the genotypic sum of squares were attributable to GCA effects for grain yield under managed drought and rainfed conditions, respectively. Hybrids TZdEEI 91 × TZEEI 21 and TZdEEI 55 × TZEEI 13 out-yielded the best checks under drought and optimal conditions by 49.13% and 39.05%, respectively. The most promising hybrids with consistently high grain yield under drought and rainfed conditions, were TZdEEI 54 × TZEEI 13, TZdEEI 91 × TZEEI 21 and TZdEEI 55 × TZEEI 21 and should be further evaluated for possible commercial production in sub-Saharan Africa.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    4
    Citations
    NaN
    KQI
    []