The chemistry and structure of nickel–tungsten coatings obtained by pulse galvanostatic electrodeposition

2012 
Abstract A detailed characterization of electrodeposited Ni W coatings prepared by pulse electrodeposition on steel and copper substrates is presented. The coatings were obtained at high current pulse frequency and show high microhardness and absence of brittleness. The surface of the coating consists of nanometer sized crystals forming a cauliflower-like structure protected by a mixture of nickel and tungsten oxides. The cauliflower structure is preserved into the bulk coating that exhibits an average composition ≈70 at% Ni 30 at% W. Different phases are observed in the bulk structure: a W-rich amorphous phase (≈40%) and Ni-rich crystalline phases (≈60%). The crystalline phases consist of crystalline domains ≈7 nm in size of Ni(W) (fcc) solid solution (12 at% W content) and a minor Ni 4 W component (less than 10%). The amorphous phase exhibits a less compact Ni W structure where some amount of C could also be present. Oxidized W species cannot be detected in the bulk coating, thus discarding the presence of significant amounts of tungsten carbide, tungstates or citrate–tungsten complexes. Our results shed light on controversial points related to the chemical composition and demonstrate the complex structure of this system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    27
    Citations
    NaN
    KQI
    []