Theoretical investigation on the adsorption and diffusion of lithium-ion on and between graphene layers with size and defect effects:

2016 
Adsorption and diffusion of lithium-ion on and between graphene layers are investigated by an analytical model, employing a pairwise potential, which can be approximated by the Lennard–Jones potential to express the interaction between lithium-ion and each carbon atom of graphene. The equilibrium position and binding energy of lithium-ion at three particular adsorption sites (hollow, bridge, and top) are calculated, and the adsorption stability is discussed. The results show that hollow site is the most stable adsorption site, and top site is the most unstable. The adsorption and diffusion of lithium-ion on different sizes of monolayer graphene are investigated and proved to be size and edge dependent. Moreover, lithium-ion would rather diffuse on the surface of graphene than through a hexagonal carbon ring to the other side no matter what the graphene sheet size is. In addition, two kinds of vacancy defects in graphene are considered to study the diffusion of lithium-ion. The vacancy defect can improve e...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    10
    Citations
    NaN
    KQI
    []