Tricyclo[2.1.0.02,5]pent-3-ylidene: Stereoelectronic Control of Bridge-Flapping within a Nonclassical Nucleophilic Carbene.

2021 
Tricyclo[2.1.0.02,5]pent-3-ylidene is a carbene foreseen to rearrange to pyramidane (c-C4H4)C, a highly strained molecule featuring an inverted C atom. Modeling of the carbene, using the (U)MPWB1K/cc-pVTZ//(U)MPWB1K/6-311G(d) theoretical model, indicated a large singlet-triplet energy gap (ΔES-T = -45 kcal/mol), a high gas-phase proton affinity (PA = 258 kcal/mol), and a preference for electron-poor alkenes. These properties are consistent with those of nucleophilic carbenes. Structural differences between the Cs-symmetric singlet (ωflap = ±44 deg) and C2v-symmetric triplet (ωflap = 0 deg) stem from nonclassical electron delocalization in the former and the lack thereof in the latter. Degenerate bridge-flapping of the singlet's main bridge, which comprises the reactive divalent C3 atom, is computed to be slow due to a high activation barrier of the C2v-symmetric transition state (TS) (Ea = 17 kcal/mol). The position of the conformeric equilibrium is subject to stereoelectronic control. 1-Substituted derivatives of the carbene (R ≠ H) are sensitive to σ inductive effects. A proximal conformation is preferred when R is electron-donating and a distal one is favored when R is electron-withdrawing. Finally, carbene rearrangements via 1,2-C atom shift or enyne fragmentation were computed. The C2v-symmetric bridge-flapping TS has the proper geometry to initiate enyne fragmentation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    86
    References
    0
    Citations
    NaN
    KQI
    []