Expression, purification, stability optimization and characterization of human Aurora B kinase domain from E. coli

2010 
Abstract Aurora B kinase plays a critical role in regulating mitotic progression, and its dysregulation has been linked to tumorigenesis. The structure of the kinase domain of human Aurora B and the complementary information of binding thermodynamics of known Aurora inhibitors is lacking. Towards that effort, we sought to identify a human Aurora B construct that would be amenable for large-scale protein production for biophysical and structural studies. Although the designed AurB 69–333 construct expressed at high levels in Escherichia coli , the purified protein was largely unstable and prone to aggregation. We employed thermal-shift assay for high-throughput screening of 192 conditions to identify optimal pH and salt conditions that increased the stability and minimized aggregation of AurB 69–333 . Direct ligand binding analyses using temperature-dependent circular dichroism (TdCD) and TR-FRET-based Lanthascreen™ binding assay showed that the purified protein was folded and functional. The affinity rank-order obtained using TdCD and Lanthascreen™ binding assay correlated with enzymatic IC50 values measured using full-length Aurora B protein for all the inhibitors tested except for AZD1152. The direct binding results support the hypothesis that the purified human AurB 69–333 fragment is a good surrogate for its full-length counterpart for biophysical and structural analyses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    7
    Citations
    NaN
    KQI
    []