Artificially-generated scenes demonstrate the importance of global scene properties for scene perception.

2020 
Abstract Recent electrophysiological research highlights the significance of global scene properties (GSPs) for scene perception. However, since real-world scenes span a range of low-level stimulus properties and high-level contextual semantics, GSP effects may also reflect additional processing of such non-global factors. We examined this question by asking whether Event-Related Potentials (ERPs) to GSPs will still be observed when specific low- and high-level scene properties are absent from the scene. We presented participants with computer-based artificially-manipulated scenes varying in two GSPs (spatial expanse and naturalness) which minimized other sources of scene information (color and semantic object detail). We found that the peak amplitude of the P2 component was sensitive to the spatial expanse and naturalness of the artificially-generated scenes: P2 amplitude was higher to closed than open scenes, and in response to manmade than natural scenes. A control experiment showed that the effect of Naturalness on the P2 is not driven by local texture information, while earlier effects of naturalness, expressed as a modulation of the P1 and N1 amplitudes, are sensitive to texture information. Our results demonstrate that GSPs are processed robustly around 220 ms and that P2 can be used as an index of global scene perception.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    3
    Citations
    NaN
    KQI
    []